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We argue that the spectrum of Liapunov exponents for long chains of nonlinear 
oscillators, at large energy per mode, may be well approximated by the 
Liapunov exponents of products of independent random matrices. If, in 
addition, statistical mechanics applies to the system, the elements of these ran- 
dom matrices have a distribution which may be calculated from the potential 
and the energy alone. Under a certain isotropy hypothesis (which is not always 
satisfied), we argue that the Liapunov exponents of these random matrix 
products can be obtained from the density of states of a typical random matrix, 
This construction uses an integral equation first derived by Newman. We then 
derive and discuss a method to compute the spectrum of a typical random 
matrix. Putting the pieces together, we see that the Liapunov spectrum can be 
computed from the potential between the oscillators. 
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1. I N T R O D U C T I O N  

In Ref. 7, Livi et al. discuss a numerica l  experiment  concerning L iapunov  
exponents  for Hami l t on i an  systems with m a n y  degrees of freedom. They 
plot, for a variety of such systems, the graph of #i versus i /N,  where #i is 
the i th L iapunov  exponent  (ordered #l  >~ "'" ~>/~u) in a system with N 

degrees of freedom. They observe that  the curves thus obta ined seem to be 

independent  of N for large N and, to a lesser extent, also independent  of 
the system under  analysis. Fur thermore ,  they observe that the graphs form 
essentially straight lines. 
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We propose here an explanation of these findings�9 Our explanation is 
based on a twofold reduction: 

1. We first argue that in a Hamiltonian system describing a long chain 
of nonlinear oscillators, in which equipartition of the energy holds, and 
which is ergodic, the tangent matrices to the Hamiltonian flow ~ ~ q~ are 
symplectic matrices, which are, for short times ~, well approximated by 

where ~ is a tridiagonal matrix of the form 0''' O) 
- -  1 (O 1 "}- (.0 2 - - ( . 0  2 - �9 - 0 

~ ' ~ =  - - 0 )  2 0)2-'}-0) 3 - - .  0 (1.2) 

0 0 ' ' "  0 ) N - - 1  

and the 0)i's are independent, identically distributed random variables with 
density F(0)). Because of equipartition, the density F depends only on the 
ergodic distribution of the coordinate of one oscillator, which in turn 
depends on the coupling potential�9 The importance and existence of an 
equipartition threshold are discussed by Livi et al., (6) but our description 
will be more detailed and goes beyond previous studies�9 

2. Assuming now that the matrices ~ have a known distribution, the 
problem remains of finding the distribution of Liapunov exponents for the 
product 

n - - 1  

1-[ d~( j~)  
j ~O  

of the tangent maps d~b~(jz) at times t=jr ,  for j=O, . . . ,n -1 .  We shall 
show that at large energy per oscillator and sufficient anharmonicity, there 
is a choice of v for which the approximation (1.1) is valid, and where, 
furthermore, successive matrices are statistically independent�9 We derive an 
integral equation which describes the connection between the density F of 
the 0)i and the integrated density K of eigenvalues of ~ ,  and we show that 
it has a unique solution�9 The density of states can be read off this solution 
by a result of Simon and Taylor312) We then make the assumption that 
successive matrices of the form S, (~)  tend to rotate tangent vectors 
isotropically in space�9 Numerical evidence, presented in Section 6, shows 
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that this assumption may or may not be satisfied for a given system. For 
those systems that do satisfy the isotropy hypothesis, we can extend the 
theory of Newman, (s'9) in which the distribution of Liapunov exponents for 
products of random matrices is studied. We arrive at a relation between the 
expected integrated density of states K for large random matrices and the 
corresponding integrated density of Liapunov exponents for their (random) 
product. 

These ideas lead to an explicit algorithm, described in Section 2, for 
determining the integrated density of Liapunov exponents for chains of 
oscillators. Applying this algorithm shows that the Liapunov spectrum is 
close to being a straight line. It depends on the probability distribution of 
the tangent matrices, and hence on the potential. 

2. THE D E T E R M I N A T I O N  OF THE L I A P U N O V  S P E C T R U M  

In order to compute the density of Liapunov exponents, we shall show 
in Section 4 that we need to compute the density of states for a random 
tridiagonal matrix of the form 

~ =  
- -  1 (D1 -'~ (~ - - 0 3 2  ' ' "  

- -  ( 0  2 ( D  2 --~ (2) 3 . . .  

�9 . . . . " 

0 0 " ' '  ( / ) N - -  1 

where the co i are independent, identically distributed random variables, 
with density F(co). 

We make the following assumptions on F: 

F1. ~dxr(x)=l, F(x)>jO. 
F2. sup~ F(~)(1 + ~2) < oe. 

F3. The support of F lies on one side of 0. 

Remark. The function F is, in the setting of Section 3, related to the 
second derivative of the interaction potential V. The conditions F1-F3 can 
then be easily reexpressed in terms of V, in particular, F3 follows from the 
convexity of the potential. 

Under the assumptions F1-F3, the integrated density of Liapunov 
exponents H(#) in the limit N-* oo is given by the following algorithm: 
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A1. For every 2 E R, 2-r 0, find a positive function u~ such that 

�9 , _ / t ' ( t + 2 ) ' ~  c 

and 

f ~ dt' u;~(t') = 1 
- - 0 ( 3  

A2. Determine L(2) by 

;o~ ;2 Z(2) = 1 - dz d o  u_ ;~ (eo ( z -  1))I~1F(~o) 

(L is the integrated density of eigenvalues of matrices of the form of ~2. The 
condition F3 is only needed in this step.) 

A3. Now compute K(2), the integrated density of eigenvalues of the 
absolute value of a matrix of the form (1.1), as follows: Given 4, we define 
7=21/2 and then 4_(4) as the square root of the smaller of the two 
eigenvalues of the matrix 

( cos2(w)+7 2sin2(w) (7 l -7)c~ 

(7-~ - 7) cos(zT) sin(rT) cos2(z7) + 72 sinZ(zT) 

Then we define 

l 
0 for 2 -..< 0 

K(2)= L(2-1(2)) for 0~<2~<1 

l - -K(2 -1) for 2>  1 

(2.1) 

Here, 2-1 denotes the inverse function of 2_. 

R e m a r k .  The numbers 4_(4) and 4+(4)= 1/4_(4) are elgenvalues of 
ISI when 2 is an eigenvalue of ~.  This follows by explicit calculation and 
observing that 

( c o s ( z F )  - F  sin(zF)~ (2.2) 
S~(~)= \ F _  1 sin(~F) cos(zF) J 

with F = 1~ 1/2. Note that only integer powers of f l  occur in Sr 

A4. Determine Pmax by 

1 22K,(2)] pmax =~  log I f  d2 
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and #mi, = --]~rnax' Then, H(/~) = 0 if # ~< Pmin, H(#) = I if # ~> # . . . .  and for 
all other #, the function H(#) is the nonzero solution of the equation 

s 2 f ds K'(s) 1 (2.3) 
J H(#) e 2u + [1 - H(#)]  s 2 

In Section 5 we show the existence of solutions to the equation in A1 
and the existence of the integral in A2 under the conditions F1-F2. In 
Section 6, we apply these formulas to a case similar to that considered by 
Livi et aL, and compare them with direct numerical studies. 

3. THE R A N D O M  M A T R I X  A P P R O X I M A T I O N  

In this section, we argue that for a long chain of coupled oscillators, at 
large energy per oscillator, and in a regime where equipartition of the 
energy holds, one can approximate the spectrum of Liapunov exponents 
by studying random products of random matrices of the form of those 
appearing in Section 2. Our arguments make precise some ideas which 
appear in Paladin and Vulpiani. (1~ 

Given a system with Hamiltonian 

N N 1 

Jt~(p,q)= ~ p~/Zm+ ~ V(qi-qi+l ) (3.1) 
i = 1  i = 1  

we let ~b, be the associated Hamiltonian flow. The Liapunov exponents are 
then given by the large time behavior of dq~,. For example, Oseledec's 
theorem tells us that if the system has an ergodic invariant measure, then 
for almost every choice of the initial point (pO, qO), (w.r.t. the invariant 
measure), 3 the largest Liapunov exponent is given by 

21 : lira l log ]ldq~t(p~ q~ I 
f ~ o o  t 

(3.2) 

Suppose r > 0 is some time interval. Then, if we set 

(p.,  q . )  = ~/, (pO, qO) (3.3) 

the chain rule of differentiation implies 

n - - I  

dq5 (pO, qO) = IF[ d ~ ( P  j, q J) (3.4) 
j ~ O  

3 If we suppose  ergodicity,  this is jus t  the Liouvil le measu re  restricted to the energy shell;  cl., 
e.g., Ref. 4. 
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We now study (3.4) when T is small. Then we obtain a good approximation 
to the solution of the equations of motion in the time interval It/, ~(l + 1)] 
by approximating the Hamiltonian by its Taylor series about the point 
(pt, qt) to second order. This gives an effective Hamiltonian of the form 

l i  i ' i  ~(2) (p ,  q) = 5 ( p , _  p5)2 + (Pi- Pl )  Pl + -~ (Pl) 2 
i=l  i=l i=1 

+ ~(q') + Z (qi- q3 ~v (q,) 
i= 1 ~3qi 

1 ~32~ +-~ ~ (qi-qt~)(qj-qfl~(q') 
t;j = 1 

with ~U(q)= ZN--11 V(qi--qi+ 1)" We have set the masses m equal to 1. Note 
that the equations of motion for this reduced Hamiltonian are 

Here, K t is the column vector whose components are 

-~qg+j~=lq)~(q' ) for i:l,...,N 
(K'),= 

0 for i = N + 1,..., 2N 

and M t is the matrix 

Mr= t a2 ~ ) 
0 ~qi (~qj 

1 0 

We can solve these equations explicitly, and if we denote the corresponding 
flow by 4~, we have 

~t = [exp(Mt,)] + [exp(MZt)] dt' [exp(-MZc)] K' 

Hence, 

d ~ ( p  t, q~) ~ d~t~ = exp(~M t) (3.5) 
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when r is sufficiently small. We then expect that the Liapunov exponents of 
our Hamiltonian should be well approximated by those of the product of 
matrices 

n-- i  

l-[ exp(TM') (3.6) 
l=0 

Note that because of the short-range nature of ~ ,  we can compute the 
matrix 

and we find 

(A(ql)),j = 

~ 2 ,}{/" 
(A(q/))sj ~ ~ (q ' ) 

V'(ql- ql+ 1) -~- V " ( q ~ -  i - -  

- q J ) ,  

if i = j  

if ]i -  jl = 1 

otherwise 

[The terms at the boundary ( i=  1, N or j = l, N) are different, but this is 
irrelevant for what follows.] Note that ~2j (A(qt))sj = 0 and ~2j (A(ql))ji = 0 
for i = 2,..., N -  1. Note also that the matrices exp(rM t) are symplectic. 

We now make a number of precise physical assumptions about the 
behavior of the system (3.1). They will show that: 

1. The numbers V"(q~-ql+ 1) occurring in the matrices A(q t) can be 
viewed as random variables cos. 

2. There is a range of �9 for which the approximation (3.5) is valid 
and for which successive matrices M t and M ~+1 are statistically 
independent. 

Our assumptions are: 

El. The energy of the orbit is E-  N and the energy per oscillator E is 
large. 

E2. The system is in a state of equipartition of the energy. 4 

E3. For  large q, the function V behaves like V(q)~ q~, with e > 2. 

From equipartition and the virial theorem, we deduce that the energy 
in the system will be divided equally between the oscillators and between 

4 In Ref. 6, numerical evidence is presented for the existence of a finite equipartition threshold 
as N ~ o o .  
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kinetic and potential energy. Using El-E3, we see that typically the 
momenta and positions will have values 

fi ,,~ E 1/2, ~ ~ E TM 

In the following paragraphs, we perform calculations of orders of 
magnitude. We therefore omit all indices, and assume that the statistical 
properties of qi and of q i -  qi+ 1 are the same. We also use interchangeably 
~U and V to denote the potential. If we consider the equations of motion 
corresponding to the Hamiltonian (3.1), we see that the equations of 
motion are 

p -~ -grad  ~U(q), 0 = P 

The solutions to these equations for times At may thus be approximated by 

p(At) ~ p(O) - At V'(q(O)) 
(3.7) 

q(At) ~ q(O) + At p(O) 

We estimate the time At over which this approximation remains valid by 
comparing the above values of p(/it) and q(/it) to the values we would 
have obtained if we further subdivided the time interval. We find 

p(At) ~ p(�89 -- �89 V'(q(1At) ) 

p(O) - �89 V'(q(O)) - �89 V'(q(O) + �89 p(0)) 

p(O) - At V'(q(O)) - (�89 2 V"(q(O)) p(O) 

Similarly, 

q(At) ~ q(�89 + �89 p(�89 

q(O) + �89 p(O) + �89 [p(0) - �89 V'(q(0))] 

.~ q(O) + At p(O) - (�89 2 Z'(q(O)) 

Thus, the approximation (3.5) will be good if 

[(At) 2 V"(q(O)) p(O)] ~ [At V'(q(0))l 

t(/it) z V'(q(0))l ~ IAt p(0)l 
These are implied by 

l/it] ,~ min ( V'(q(0)) , p(0) ) 
p ( ~  V---~0)) ~ / 

{ E'- I/~ El~2 
min \ EI-TT~Z-2/~, F~ -i/~/] 

El/~ i/2 

(3.8) 

(3.9) 

(3.10) 
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Note that the flow (3.7) gives an expression for the tangent map which is 

dqS~ , (Pq) : (A l t l  - A t V " ( q ) ) ~ e x p ( A t ( ~  - ~ ' ( q ) ) )  (3.11) 

1 - (�89 2 V"(q(O)) - A t  V" (q (O) ) -  (�89 V"(q(O)) p(O)) 

At 1 1 - (�89 2 V"(q(O)) J 

This is close to the approximation we previously derived, provided 

I(At) 2 v"(q(0))l 1 

I(At) 2 V"(q(0)) p(0)[ ~ IAt V"(q(0))[ 

Both of these inequalities are satisfied if IAt[ ~ E ~/~-1/2 
We now compute the amount  by which the components V" of the 

tangent matrix change during a time St. This change is of the order 

d V" ~" At V"(q)  (t ~ At V"(q)  p ,~ At E1/2E 1 - 3/~ ~ 

Suppose now that we assume A t ~ E  ~/~-l/z, in accordance with (3.12). 
Then the change in the tangent matrix elements will be of order 

E~/~- ~/2 E m  E~ 3/~ ~ E ~ - z/~ 

This is of the same order of magnitude as the size of V". Hence, under the 
assumptions El -E3,  we see that for A t ~ E  ~/~ 1/2 the elements in the 
tangent map dq~t at t = 0 will be very different from those in dq>~, at 
t = A t ,  and so we may choose them to be randomly and independently 
distributed with respect to their previous values and among each other. 

Note that the distribution F of the elements of d ~ ,  depends on the 
potential V and on the invariant measure of the flow. We make a further 
assumption: 

E4. Statistical mechanics holds at large energies for systems with 
many degrees of freedom. 

provided I(At) 2 V"(q)[ ~ 1, which is valid if 

[At] ~ E ~/~- 1/2 (3.12) 

Note that this is the same inequality as the one in (3.10). 

Romork. We should also check that when we further subdivide the 
time interval, we do not change the tangent map to the flow very much 
either. To see this, note that the tangent map to the flow computed with a 
time interval At~2 is just 
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We can then go one step further and compute the density F at energy 
E per degree of freedom from a knowledge of the potential alone. First note 
that the quantities V"(qt~ - ql+ 1) and V"(q~_ 1-qt )  are uncorrelated. Thus, 
we can treat the various elements of the matrices A(q l) as independent 
random variables. Because of equipartition, the density F of these random 
variables can be determined numerically by sampling the coordinates of 
two oscillators. Furthermore, we can compute the density from a 
knowledge of the potential alone. The argument goes as follows: The 
integral of the function F up to co is, according to what we have said above, 
the probability that V"(qi-qi+l  ) takes a value less than o9. We denote 
G(co) = ~_~ dco' F(co'). In the canonical ensemble, we first calculate 

Ga(co) - Se(~)exp[ --fl.)r~FN(p, q)] dp dq 
exp[ - - ~ f  N(P, q)] dp dq 

(3.13) 

where 

E(co) = {(p, q) ~ R2U I V"(qN/= -- qN/2+ ,) < 0~} (3.14) 

We may integrate over the p's and we get 

G /co~ ~E(o~)exp[--/~z/N--11 V(qe--qi+l)] dq 
~ ' =  ~exp[- /~E~j11  V(qi-q~+l)]dq 

(3.15) 

which, by a change of variables to q i -  qi+ 1, leads to 

~ v,,(x) < o~ e -~v(x) dx (3.16) 
G~(co) = ~. e -~V~x~ d x  

Observe that if V is convex, then the support of G~ is contained in {co > 0}, 
which is our condition F3. By the standard techniques of statistical 
mechanics, we have then 

G(CO) = Gt~,(co) 

where/~* is determined by the equation 

E. N =  ~ 9ffu(P' q) exp[ --fl* JFN(P, q)] dp dq 
S exp[--[3*~,~r p, q)] dp dq 

(3.17) 

and E is the energy per oscillator. The simple set of Eqs. (3.13)-(3.17) 
together with our earlier results show the following: 

The density H of Liapunov exponents of a chain of  nonlinear oscillators 
at high energy per oscillator can be predicted through a series of integral 
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transforms of the interaction potential, by solving first Eq. (3.17) to obtain 
the probability distribution of the elements of the matrices (3.11) and then 
applying the algorithm A1-A4 to the matrices (3.11). 

4. L IAPUNOV EXPONENTS FOR PRODUCTS OF 
SYMPLECTIC  MATRICES 

In this section, we argue that one can apply a modification of the 
theory developed by Wachter (13) and Newman (9) to evaluate the dis- 
tribution of Liapunov exponents of a random product of matrices in terms 
of the density of eigenvalues of a single matrix. We begin by studying 
symplectic matrices of size 2 N x 2 N  and derive one of the formulas in 
Newman for this class of matrices. We can then apply this theory to take 
the thermodynamic limit N ~ oe. 

Let Sj(f2) be a set of independent, identically distributed random 
matrices of the form of Eq. (1.1); however, the index j now denotes 
different matrices, and not the size of a time interval r, which we assume 
fixed. We also define 

s -_=  ( I  sj( ) 
j = l  

If we assume that the Liapunov exponents of the product are ordered 
as #1 ~>P2 ~> " " ,  then for almost every choice of (linearly independent) 
normalized vectors xl,..., xk we have 

1 
#1 + "'" + # k =  lira . . . .  log(lISnxl A /x Snx~ll) 

n ~ o o n  

Let xt(j) = Six1, for l = 1,..., k and j = 0 ..... n. Then 

1 n ( H S j x I ( j _ _ I ) / k  . . .  A S j X k ( j ~ I ) ] ] . ~  
#1 + ""  + # k =  lim nJ ~ log 

. . . .  =1 \ ~ I ) A  Axk( j - -1 ) l l  J 

= lira 1 log S jx l ( j -  l )  Sjxk(j-- l )  
o_oo  1 ^ ' A l l x k ( j - 1 ) H  

-- ~ log x l ( j - - 1 )  Xk(j--1) ] 
j= l  [ ]xl ( j -1)[[  A -.. A Ilxk(j--l)[[ 

(4.1) 

It is a consequence of Oseledec's theorem that #1 + "'" +/~k is almost 
surely independent of the choice of xl ..... xk. Therefore, we treat xl ..... xk as 
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independent random vectors, uniformly distributed on the unit sphere. 
Denoting the expectation with respect to these variables as Ex, we have 

#1 + ""  + #k = lim _1 E~(log IIS~xl A . . .  A S"xkll) 
n ~ o o  n 

l i m ! [  " ( Sjxk(j--1) ) 2= ex l o g  . . .  , ,  
= 1 x l ( j - -  1)ll I lxk(j-  1)l] 

/x .-. /x (4.2) 
j=l  IIXl(j-- 1)11 Ilxk(j-- 1)11 

We now make the following hypothesis. 

R1. The vectors e t ( j ) = - x t ( j -  1) / l lx t ( j -  1)ll, J = 1, 2,..., are, for fixed l 
and almost every choice of xt and Sl, $2 ..... uniformly distributed 
on the unit sphere. 

Remark. This hypothesis means that multiplication of a random 
vector by a random sequence of matrices of the form Sj does not tend to 
rotate that vector into any preferred directions. This hypothesis seems not 
to be satisfied in general for the systems under consideration. Numerical 
experiments rather suggest that the vectors are localized in the following 
sense: If one of the components of et(j) is large (in modulus), then nearby 
components tend to be large, too. As j varies, the components at which 
these maxima occur move in an apparently random fashion. In the absence 
of a theory of these time-dependent localization problems, we continue our 
analysis under the hypothesis R1. In those cases where numerical evidence 
indicates that R1 is most nearly satisfied, we verify that we obtain good 
agreement between theory and numerical experiment; see Section 6. 

Consider now the first term in the expression (4.2) in the light of this 
hypothesis. We first note that it can be rewritten as 

1 
lim - ~ Ex(log [[Sjel(j)/x .. .  /x Sjek(j)[I) 

n ~ o o  f / j =  1 

where the e~(j) are random, uniformly distributed unit vectors in R 2N. Note 
that et(j) is independent of er( j )  if l r  since these two vectors are the 
product of a sequence of invertible matrices and two independent random 
variables. Therefore, we have 

1 
lim - ~ Ex(log I[Sjel(j)/x .. .  /x Sjek(j)[I)= g(log liNe1/x .. .  /x Sekll) 

n ~ o o  n j =  1 
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where 8 denotes the expectation with respect to both the random matrices 
S and the independent, uniformly distributed, unit vectors xt. We have 
omitted the indices j over which these expectations are taken. 

Let Xt( j )  be 2N-dimensional vectors whose entries are Gaussian 
random variables of mean zero and variance one. Note that the subspace 
spanned by {xI ( j ) , . . . , xk( j )}  is equidistributed with that spanned by 
{Xl(j),..., Xk( j )} .  Thus, we have 

8(log [iSe 1 A -.. A Sekl[)= 8(log I I S X ~  A - - .  A SX~It)--kS(log IIXlI) 

On the lhs, 8 denotes the expectation with respect to the probability 
distribution of the random matrices S and the random unit vectors xl. On 
the rhs, it denotes expectation with respect to the random matrices S and 
the Gaussian random variables Xl. The term k8(log rIXII) comes from 
normalizing the X~'s. 

Following Newman, we let G(a 1 ..... a2u ) be the 2 N •  matrices 
whose entries are independent mean-zero Gaussian random variables, such 
that elements of the lth row have variance a 2. Then 

8(log IlSgl A --- A SX~II) 

=8(1og [ISG(1 ..... 1)v~ A ... A SG(1,..., 1)vk][ ) 

= �89 det(PkGT(1 ..... 1) SrSG(1,..., 1) Pk)) 

Here, UI,...,/.)2N are the natural basis vectors in R 2N, and P~ is the 
projection onto the span of v~,..., vk. Let Oj be the orthogonal matrix that 
diagonalizes STS j, i.e, O, STS Of= I)J. Then 

�89 1)SrSG(1,..., l )Pk))  

= �89 det(PkGV(1,..., 1) OTDZOG(1 ..... 1) Pk)) 

= �89 det(PkGT(1 ..... 1) D2G(1,..., 1) Pk)) 

because OG(1,..., 1) is equidistributed with G(1,..., 1). If we let 
21(j) ..... 22N(J ) be the eigenvalues of Dj, i.e., the eigenvalues of [Sj[, and we 
define 

(/)k(*~l, ---, " ~ 2 N ) =  ~(log [IG(2~ ..... "~2N) Vl A ' - -  A G ( ~ I , . . .  , z~2N ) 1)k[I) 

where ~ denotes an average over the entries of G with 21,..., "~2N fixed, we 
obtain 
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! 
lim Z l ~  A . . .  A Sjek(J)l] ) 

n ~ c ~  n j =  1 

= g(log IIDG(1,..., 1) vl A -.. ^ DG(1,..., 1) vklb)-kg(log ][XII) 

= g ( l o g  []G(2~ ..... 22N) Vl A ... /x G(21,..., "~2N) v k U ) - k g ( l o g  IlX[I) 

= g(q~k(2t,..., 22N)) -- kg(log HXI[) 

Here, ~ denotes an average over the random eigenvalues 21,..., '~2N' A 
similar argument shows that 

n~lj~ log x ~ ( j - 1 )  /x . . .  A x k ( j - - 1  ) 
nlim~ = I I x 6 j  1)ll I l x k ( j - -  1)11 

= r 1 ) -- k~(log II X[I) 

Thus, we obtain 

/~ + " + #k = ~({bk(21,..., 22N))-  r ..... 1) (4.3) 

which is precisely Eq. (1.12) of Ref. 9. 
This allows us to apply the powerful result of Newman (Ref. 9, 

Theorem 2.11). His work uses an interesting study of the density of states 
of random matrices due to Wachter. ~ We repeat Newman's result in its 
original form (adapted to our notation), and state then which assumptions 
are changed in our application. 

T h e o r e m  4.1. Let /t N>~ .-- >~#N denote the Liapunov exponents 
for the product M, .--M1 of N •  N real i.i.d, random matrices and let Hu  
denote the empirical distribution of the /~N, 

HN(II)  ---- N -  1 . (number of i with #u ~< #) 

Suppose M~M~ has, for each N, a rotation-invariant distribution. Let K N 

denote the (random) empirical distribution of the eigenvalues 2N of [M~[. 
Suppose that there exist nonrandom _2>0 and ~ <  ~ such that, with 
probability one, _2 <~ 2 u ~< ,~ for all i and N. Suppose further that there is a 
nonrandom distribution function K such that with probability one, K N ~ K 
(at all continuity points of K). Then HN(IA) "--+ H ( ~ )  for all/~, where H is a 
continuous distribution function satisfying 

H(k t )=0  for / ~ < - � 8 9  2dK(2)]  

H ( # ) = I  for / ~ > 1 1 0 g [ f 2 2 d K ( 2 ) l  
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H(#) is, for all other #, the unique solution in (0, 1) of 

2 2 
dK(Z) 1 

J He2~'+ (1 --H) 2 2 

The discussion leading to (4.3) shows how the assumption on 
rotational invariance is replaced by the weaker assumption R1. The 
assumption that [S[ has eigenvalues uniformly bounded away from 0 and 
oo is obviously fulfilled in our case, since S is symplectic and bounded, i.e., 
its eigenvalues come in pairs 2 ~ 2-1 

5. R A N D O M  T R I D I A G O N A L  MATRICES 

In this section we justify steps A1 and A2 of the algorithm of Sec- 
tion 2. We want to study the distribution of eigenvalues of the matrix (1.2), 
and therefore we consider first the eigenvalue problem for such matrices. 
Recall that 

~ =  

0)i -0)1 0 
- -  1 0 ) 1 + 0 ) 2  - - 0 ) 2  

- -  0)2 ('02 + 0)3 

0 0 

--- 0 ) 

' ' "  0 

�9 " O 

"" [-ON 1 

The eigenvalue problem ~ x = 2 x  can be rewritten as the system of 
equations in the unknowns x~ ..... XN, 

(5.1) --0).0. l Xn_ l -~ ((Dn_ l -[- (Dn) Xn -- (DnXn + l = 2Xn 

for n = 2 ..... N -  1, and with obvious modifications for n = 1 and n = N. We 
rewrite the problem, defining z ,  = x , +  l / x , ,  as a system of transformations 

(5.2) Zn'~-l(oJn-l-~t3)n--2--(Dn-l~Zn_l] 

If we denote the distribution of z ,  by G, and that of the random variables 
0), by F and assume that we are given G1, then we can write 

(5.3) 

Gn+l(Zn+l):  f n~l F(o)j)dfJ)j f i  dzj G l ( Z 1 )  

j=l j=l 

X ~5 z j - - - -  0 ) j _ l + 0 ) j - -  
j=2 0)j Zj ~ / /  

822/50/5-6-2 
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Suppose we define inductively a sequence of functions of two variables by 

Bx(o), z) = G~(z) (5.4) 

Bj+l(co, z ) =  F(~o')B:(co',z')6 z -  co '+o9- .~ - - -  Z d~o'dz' (5.5) 

Clearly, we find 

G2(zO=ff(co~)f(ml)al(z~)6 z~- ~ l + c o ~ - , t - ~  do~dco~dZl 

f F(CO2) B2(CO2, z2) dco 2 

and, by induction, 

(5.6) 

Gn(z.) = f F(CO~) B.(CO~, z.) dco~ (5.7) 

for all n>~2. Instead of studying Gn, for which we want to show the 
existence of a limit as n ~ ~ ,  we study the functions Bn. We rewrite 
Eq. (5.5) as 

Bj+ 1(o9, z) = f F(co') Bj(co', z') 

• 6 ( ~ o ( z - 1 ) +  co' ( 1 - 1 ) +  2) ) Ico[dco 'dz '  (5.8) 

and we see that Ico[ 1 Bj+ 1(~o, z) is a function of the combination co(z-  1) 
alone. We thus define 

and we set 

Uk(co(z--1))=Bk(co, z)[col 1 for k = 1 , 2  ..... (5.9) 

t : c o ( z -  1), t' = co ' (z ' -  1) (5.10) 

Note that the Jacobian of the transformation (co', z') ~ (co', t') is Ico'[ and 
that z ' =  1 + t'/co', and 

co' ( ~ 1) co'-c/co' t' co' . . . .  (5.11) 
1 + t'/co' t' + co' 
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Therefore, we get 

gj+ 1(0 = dt' &o' F(ea') Uj(t ' )  6 t - I- 2 ( 5 . 1 2 )  
t '  + o f  

We want to eliminate ~o' by integrating over the ~-function. Note that the 
6-function has support on 

t ' ( t + 2 )  
0 )  t -  t - t '+2  

and that 

t'OJ' ) t' t'09' t '2 

Co~, t t '+co  ' + 2  - t '+co '  t - ( t '+co ' )  ~ =  ( t ' + o f )  2 (5.13) 

Therefore, 

Using now 

( t'e)' ) ( t'(t+2)) t'+co '2 (5.14) 
6 t-t,+o)------~+2 = 6  co'-P ~ - 7 + 2 )  t' 

t' t' t - t '+2  
t '+m'- t ' - t ' ( t+2) / ( t - - t '+2)-  t' (5.15) 

we see finally that 

t--2J Uj(t') (5.16) t ' - t - Z  

We define the operator T (which depends on F) by 

Note that T maps nonnegative functions to nonnegative functions; in fact, 
it is "positivity improving," i.e., (Tu)(t)> 0 for all t, if u(t)>1 0 for all t Ecf. 
the remark after (5.26)]. 

We want to find the fixed points of Eq. (5.16), which is equivalent to 
finding the fixed points of (5.17). This will allow us to find the density of 
states of ~ by applying ideas originally due to Schmidt, (n) more recently 
elaborated by Simon and Taylor. (~2) Let {eU(j)}j= 1,...,N be the eigenvalues 
of the system (5.1). If we define 

L ( 2 ) =  lira --1 {number ofj[e~(j)<2} 
N ~ o o  N 

then L(2) exists and is almost surely independent of co. (1'5) 
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If we rewrite (5.1) as (5.2) and are given the distribution G~(Zl), then 
(5.3) determines Gn(zn). Using now the condition F3 on F, i.e., that the 
support of F lies on one side of zero, we see that f l  is a definite matrix and 
by Corollary 2.2 of Ref. 12, we have 

l - L ( - 2 ) =  lira 1 ~ ~o M-~ oo -M dz G,(z) 
n = l  

[-In Ref. 12 the operator is considered with opposite signs in the off- 
diagonal elements; hence, we have here 1 - L ( - 2 )  rather than L(2).] By 
Eq. (5.7) and the definition of U,, we have 

G~(z) = do) F(co)1r U~(co(z- 1)) 

On the other hand, given G~, we can determine U1 and then U,+~ = T ~ UI. 
Thus, 

G,,+l(z)-: d(nf(co) I~l T~UI(co(z- 1)) 
- - o o  

In particular, we have the following result: 

P r o p o s i t i o n  5.1.  If 
1 M - - I  

lim - -  y' T " U I : U *  
M ~  M n=0 

then the integrated density of states for ~ is given by 

g 1 - L ( - 2 )  = dz dr U*(co(z-  1))leol F(o~) 
--oo 

(Recall that T, and hence U*, depend on 2.) 

We now prove that the above limit exists. We will use the notation 
ilfLip = [~ ]f(x)l p dx] lip for 1 ~< p < oo and ][fl], = SUpx Lf(x)]. Our first 
result is the following: 

T h e o r e m  5.2. Assume that supr F(~) ~2 < ~ and that ( d x F( x )  = 1. 
If ). #0 ,  then for every function U~ in L 1, with iL Ult[1 = 1, the limit 

1 M ~  1 
lim T ~ U 1 

M ~  cx~ m n = o  

exists and is equal to a function U* in L 1. In fact, U* is the unique eigen- 
vector of T with eigenvalue 1. 
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ProoL This proof is similar to the one given by Delyon et aL ~2) It is 
based on the following two lemmas: 

k e m m a  5.3. The operator T is a contraction on L ~. 

L e m m a  5.4. For 4 9 0 ,  the operator T 2 is bounded on L ~ by 
const-) ,-2,  where the constant depends only on F. 

Proo f  o f  L e m m a  5.3. We have 

]lTul[1 <~ f dt f dr' P~-ff =~--)~/l ~ [U(t')l (5.18) 

Changing variables to t' and z with 

we have 

and hence 

t '( t  + 2) 
z = - -  (5.19) 

t ' - t - 2  

t' )2 
dz = t' - - t  -- 2 dt (5.20) 

rl Tulll < f dz de' F(z) lu(r)l  < Ilulla 

since F is a probability measure. The proof is complete. 

Remark .  Equation (5.20) also shows that if u ~> 0, then [1Tu]ll = iluNl. 

Proo f  o f  L e m m a  5.4. We assume, without loss of generality, that 
u >~ 0. Then 

u( l I) 

Ilulll 42 ~< ~ sup F(r 
I t+Zl 

Bo Ilulla 
= it+21= (5.21) 

If t + 2 is bounded away from 0, (5.21) and Lemma 5.3 lead to a bound 
for TZu: 

[ T2u( t )l ~ Bo }1 u}l.___..,.__~ (5,22) 
It+A] = 
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We next consider the integral 

_ [  t'(t + 2)'~ t, 2 2 u(t') (ru)(,)= f d,' (5.23) 

which we separate into the regions It'[ >~2Lt+21 and ] t ' [ .<2[t+2[.  It is 
convenient to introduce the notation q = t + 2. In the region l t'[>~ 2 [q I, we 
find 

.<2 

and hence 

~[  t'(t + 2)'~ t' 2 ' _< 
f,,.l>i,q, dr' 1~7;---7-----2) , ' - t - ) .  (Tu)(t )-.~4tiFLIoo llrull, (5.24) 

To discuss the region it'[ ~< 21q[, we change variables to 

t 'q 
z = (5.25) 

t ' - q  

so that t ' =  z q / ( z - q ) .  We get the bound, using (5.21), 

~2~q~ t- -~J t ' - t - ) .  (Tu)(t') 

(zq) 
= flz/(z q)l<~2dz F(z) ~ q  (Tu) ~ q  

<~; ~ dz F(z) z 2 BollULI1 
Iz/(=-q)t<-2 ~ - q  I z q / ( z - q ) +  ).l 2 

fl z 2 
dz f ( z )  = B~ IlUl] 1 z/(z--q)] 42 zq+ z2 - q2 

If Iq[ >i)]4, the assertion of the lemma follows already from (5.22). So we 
may assume Lq] < )./4. This, together with Lz/(z-  q)L `< 2, implies 

zq+ z q). 2 < B  1 
; ) . _  ).-Y 

The proof of Lemma 5.4 is complete. 
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Proof of Theorem 5.2. We have already seen that 

II TIll ~ 1 (a) 

and that 

(T~u) is uniformly bounded in L ~ for n = 2 ,  3 .... (b) 

By Theorem IV.8.9 in Ref. 3, a set C c L I ( R ,  #(ds))  is weakly sequentially 
compact if it is bounded and if for each decreasing sequence of sets {En} 
with empty intersection, the limit 

lim fen f ( s )  #(ds) = 0 
n ~ c ~  

is uniform for f in C. If the functions f in C are all uniformly bounded in 
L ~, this condition is satisfied. Thus, the sequence {T~U}n~>2 is weakly 
sequentially compact for any U in the unit ball of L ~. By (a), 
( l /M) ZM=01 T~U is bounded for U in the unit ball, and T~U/n-- ,  0 as 
n--* or. Since the unit ball is a fundamental set of L ~, these facts, plus 
Corollary VII.5.3 in Ref. 3, imply that 

1 M 1 
lim ~ T ~ U = U* 

M ~  oo m n = 0  

Since JITUIII= HUII~ : 1 and T maps positive functions to positive 
functions, we see that for positive U the limit U* is not zero. Thus, 1 is an 
eigenvalue of T. Suppose now that the eigenvalue 1 is not simple. Then 
there exist u and v in L 1, both real, and normalized to I[ul[~ = Ilvltx = 1 with 
u # i v  such that Tu = u and Tv = v. Then 

[]u - vii1 : II Tu - TvJll = f dt [(Tu)(t)  - (Tv)(t)l 

Since u # v  and l iu l l l  = I lvl l~,  u ( x ) - v ( x )  i s  not everywhere positive (nor 
everywhere negative). Thus, assume u ( x ) - v ( x ) > ~ O  for x ~ E l  and 
u ( x ) - v ( x )  < 0 for x e E2, with El and E 2 of positive measure. By the 
triangle inequality, 

, t, )2 
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and this inequality is strict if 

Note now that (5.26) holds if, for each t ' e  E2, we can find a t such that 

t '(t + 2)/(t' - t - 2) e supp f 

Clearly, such a t always exists, and hence (5.26) holds. Set now 
z = t'(t + 2)/I t '  - (t + 2)]. Then 

Thus 

dz=  
t '2 d t  

(t' - t - 2) 2 

klu-vl l l  < f dt' f dz F(z) lu ( t ' ) - v ( t ' ) l  = [[u-  vii1 

This contradiction implies that u = v .  The proof of Theorem 5.2 is 
complete. 

Remark.  The following argument shows that the operator T 4 is in 
fact compact: By Definition VI.4.1 in Ref. 3 an operator is weakly compact 
iff it maps bounded sets into weakly sequentially compact sets. By our 
previous results T 2 is therefore weakly compact. We may now apply 
Corollary VI.8.13 of Ref. 3, which implies that the product of weakly 
compact operators in L 1 is compact. Thus, the assertion is proven. 

6. NUMERICAL EXPERIMENTS FOR SYMPLECTIC MATRICES 

In this section, we first outline how numerical experiments could be 
done to test our theory to its full extent. We then present results of a much 
less sophisticated test, involving especially the equidistribution hypothesis 
R1. Our results are encouraging, but some serious open questions remain 
unsolved. 

6.1. A Complete Algorithm 

In the preceding sections, we have in fact already outlined the 
algorithmic aspects of every step of the argument, with the exception of the 
problem of solving the integral equation leading from the probability den- 
sity F for the ~o i to the density of the eigenvalues L of the corresponding 
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matrix O. We suggest now a method for doing this, but we have not tested 
this method. 

We want to solve the integral equation Tu = u with T as defined in 
Eq. (5.17). The kernel of this integral equation is quite singular, and thus 
the numerical calculation will become inefficient. It is, however, possible to 
devise a numerically acceptable algorithm by considering a system of 
equations of the form 

( T * v ~ - 2 v n ,  u ) = O  for n = l  ..... nma x 

for a suitable basis of vectors vn. Here, T* is the adjoint of T and (-, -) is 
the usual scalar product. The integral T*v , ( t )  can then be computed to 
high accuracy for any given t by using a conventional integrator, and then 
we can choose a finite set tl ..... t . . . .  of points for which we get a system of 
linear equations 

E '1 T*Vn(ti) - -  2vn(ti u(ti) = 0 
t 1 

for i =  ! ..... nma x. This gives a numerical sampling of u = u~. One then 
integrates, according to A2, and recovers a function L(2). 

In practice, there is a more efficient "Monte Carlo" method, in which 
one determines numerically the density of states of a matrix of the form of 
Eq. (1.2), by generating a random matrix of this form on the computer and 
determining numerically its eigenvalues. One fixes a large N (we have taken 
up to N =  1000, which is possible due to the tridiagonal form of the 
problem) and one determines the spectrum of ~.  The eigenvalues 2i of 
ISI = (STS) m are then easily obtained through the relation (2.1). [One can 
then even solve the identity (2.3), by replacing it by the corresponding 
numerical problem 

2N 2 2  = 2 N  (6.1) 
Z/t(#) e2 + [1-H(#)] 

j = l  

Note that because of the symplectic nature of S, H satisfies the relation 

H ( - # )  = 1 - H(#)  

which we prove in the Appendix.] 

6.2. A Simplified Test 

We have tested the predictions of the theory for the simplified problem 
of a product of random matrices which approximate matrices of the form 

s O~ 16 , 
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The approximation we use is valid for small z. It is 

M(~)  = (zll -~g~) 

Note that the matrices M(F~) are only approximately symplectic. We have 
performed extensive runs for uniform distributions of the random variables 
co i taking values in intervals [a, b] with (a + b)/2 ~ {0.25n, n = 1 ..... 10} and 
z~ {0.025k, k =  1, 2,3}. In these cases, (a-b)~2 was chosen to be 0.25m, 
with m =  1,..., n. The matrix ft  was taken 100• 100. We computed the 
largest Liapunov exponent in all these cases and compared it to the predic- 
tion given by A4. We simultaneously tested the statistical independence of 
the components of the image vectors as follows. We start with an initial 
vector, whose components are normally distributed, and apply 10,000 
matrices M(f~) to it, keeping the resulting vector normalized at all times. 
For the final vector, we consider the components wi and compute 
v i = w i - ( w ) ,  where ( . )  denotes the average over the components. We 
then compute d = (w 4) - 3 ( w 2 )  2. We also repeated this calculation for 
20,000 up to 40,000 matrices. For those values of the parameters n, m, and 
k for which A is about as small as it can be for a normal distribution, we 
find that the value of the largest Liapunov exponent predicted by our 
theory is off from the numerically computed value by between a factor 1.01 
and 2 with no apparent correlation with A. We have no explanation for 
this discrepancy with our theory. On the other hand, if A really reflects a 
nonnormal distribution, then the result is off by a factor of around 10, 
which is more satisfactory. This seems to happen especially when the 
random variables have support near 0. 

Paladin and Vulpiani (1~ do not consider matrices of the form (1.1), 
but rather matrices of the form 

S'(fl) = ( 1 l l f l )  (6.3) 

which are easily seen to be sympiectic. One should think of S' as the time 
one integral of the matrices of the form of (1.1). Since, under our 
assumptions El-E3, the matrices change rapidly in time, these matrices are 
not a good approximation for the situation we consider. They are, of 
course, interesting in their own right, but we do not expect our theory to 
apply in this case. It thus remains mysterious why the experimentally 
observed Liapunov spectrum of these systems is so close to that of the 
systems considered above. 

The question of the shape of the function H representing the density of 
Liapunov exponents seems to be less delicate than the estimate of their 
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absolute size. In fact, using the identity (6.1), one observes that for a very 
large class of distributions of the 2i one obtains mildly S-shaped, but essen- 
tially straight lines and this agrees well with the known general behavior in 
all examples, in other words, our theory confirms and explains the 
essentially uniform density of Liapunov exponents. 

A P P E N D I X  

In this appendix, we prove that the integrated density of Liapunov 
exponents H satisfies H ( - # ) - -  1 - H ( # )  if the eigenvalues of the random 
matrices come in pairs 2 and 1/2. 

Let K be the integrated density of eigenvalues. We consider a density 
K': R + --, R + satisfying 

fo ~daK'(a)= l (A.1) 

The symmetry 2 ~ 1/2 implies 

K'(a) = K'(1/a) a -2 

Note that, by (A.2), 

1 ~dXK, o~ K, l f 1 
fo da K'(a) f(a)= fl ~ ( - l x ) f (x )=  fl dx ( x )  ( x )  

Define 

(A.2) 

f 
o o  

B= (a+a-1)daK'(a) 
1 

Assume b e [ B -  1, B] and assume that x = x(b) is a nonzero solution of the 
equation 

f ~ ~ 1 b x + ( 1 - x )  a ~-bx+(1--x) a 1 daK'(a)=l (A.3) 

l . e m m a  A.1. We have the relation x(b-1)  = 1 - x ( b ) .  

ProoL Assuming that b and x=x(b) are given, we 
Eq. (A.3) that 

deduce from 

l=fSdaK,(a)_2  2 ~ b x + 2 ( 1 - x )  
0 x + (1 -x )2+~ bx (1 -x )  

(A.4) 
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where ~ = a + a 1, Subtract ing 1 on both  sides, we find 

( ~  da c~bx + 2(1 - x) - 262x 2 - 2(1 - x) 2 - 2~bx(1 - x) 
0 K'(a)  Jl b 2 x  2 + (1 - x )  2 q- ~bx(1 - x)  

fl~ 2(1 - x)  - 2b2x - ~b + 20tbx 
= x da K ' (a )~xy- -~- ( -~- - - -~  ~--- f fx~l---  ~ (a .5)  

(o~ da 2b-2(1 - x) - 2x - ~ b -  1 + 2c~b - ix 
K'(a)  (A.6) 

x 2 + b-2(1  - x) 2 + ~b-~x(1 - x) 

U p o n  setting x = 1 - y  and b - 1 =  c, we see that  the expression in Eq. (A.6) 
equals 

f 
~ 2c2y - 2(1 - -  y)  - ~c + 2~c(1 - y) 

O=  ~ d a K ' ( a )  c 2 y 2 + ( l _ y ) 2 + ~ c y ( l _ y  ) 

- 2 c 2 y  + 2(1 - y)  - ~c + 2c~cy 
= - Jl da K ' (a)  c - - ~ +  ~- f - )~-+~-~y(1-- - - -~  (A.7) 

Work ing  our  way back to Eq. (A.4), the assertion follows. 
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